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What are Simple Cycle Reservoirs and why do we care?

Simple Cycle Reservoirs(SCRs) [15] are a type of highly restricted neural network architecture where
information flows through a fixed, circular pathway with a single degree of freedom.

• Efficient processing of sequential data with minimal computational complexity
• Simplicity is particularly advantageous for hardware implementations
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What are Simple Cycle Reservoirs and why do we care?

SCRs are widely adopted in both hardware implementations [2, 13, 4, 1] and excels in time series
forecasting tasks [18]. Yet its theoretical foundations have been lacking.

This study fills the gap – we demonstrate, constructively, the representational power of SCR and show:

SCRs are universal approximators of time-invariant dynamic filters with fading memory in
C and R, respectively.

Figure: Photonic implementations of SCR from [3, 11, 9] resp.
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Brief overview

• Reservoir Computers are special types of Recurrent Neural Network recently proven, with
existential proof, to be universal.

• Simple Cycle Reservoirs is a highly restricted type of Reservoir Computer with one degree of
freedom, which is important for both digital computing and analogue computers.

• We present a constructive proof that Simple Cycle Reservoirs are universal in both C and R.
• The universality of SCRs not only advances theoretical understanding but are also pivotal for

practical hardware implementations in emerging computing technologies such as photonic
integrated circuits.

• In photonic circuits: Cyclic reservoir is the only thing that is currently implementable. Here we show that
SCR is all they need.
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Definitions

Definitions ... Definitions ... Definitions...
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Time series

The context of this talk is machine learning on time series data, characterized by their temporal
dependencies. More formally:

Definition

A Time Series is a sequence of data points {xt}t∈I indexed by time t ∈ I.
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Two Paradigms of learning from Time Series

• “Trades time for space" – time series a static
input

• Temporal correlation is disregarded due to the
nature of the static input. [19]

• Example: transformers

• Captures temporal dependencies in the input
data stream through parametric state-space
modelling

• Sequentially encodes input time series in state
space

• Examples: Recurrent Neural Networks (RNN),
Kalman Filters, etc
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Reservoir Computing

• Reservoir Computing (RC) is a subclass of Recurrent Neural Network defined by a fixed parametric
state space representation (the reservoir) and a static trained readout map.

• The simplest recurrent neural network realization of RC are known as Echo State Networks (ESN).
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Reservoir Computing as Dynamical System

{
xt = f(Wxt−1 + Vct)

yt = h(xt)

where:

• W ∈ RN×N – fixed dynamic coupling matrix,
spectral radius < 1.

• V ∈ RN – fixed input couplings
• h : RN → Rd – trainable readout map

• f : RN 7→ RN – fixed activation function
• {x(t)}t ⊂ RN – states
• {u(t)}t ⊂ R – inputs
• {y(t)}t ⊂ Rd – outputs
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Reservoir Computing as LINEAR Dynamical System

{
xt = f(Wxt−1 + Vct) = Wxt−1 + Vct

yt = h(xt)

where:

• W ∈ RN×N – fixed dynamic coupling matrix,
spectral radius < 1.

• V ∈ RN – fixed input couplings
• h : RN → Rd – trainable readout map

• f : RN 7→ RN – identity function
• {x(t)}t ⊂ RN – states
• {u(t)}t ⊂ R – inputs
• {y(t)}t ⊂ Rd – outputs
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Linear Reservoir System

Definition

A linear reservoir system is formally defined as the triplet R := (W,V, h) where the dynamic coupling W is an n× n
matrix, the input-to-state coupling V is an n×m matrix, and the state-to-output mapping (readout) h : Cn → Cd is a
(trainable) continuous function.

The corresponding linear dynamical system is given by:{
xt = Wxt−1 + Vct

yt = h(xt)
(1)

where {ct}t∈Z− ⊂ Cm, {xt}t∈Z− ⊂ Cn, and {yt}t∈Z− ⊂ Cd are the external inputs, states and outputs,
respectively. We abbreviate the dimensions of R by (n,m, d).

We make the following assumptions for the system:

1. W is assumed to be strictly contractive. In other words, its operator norm ∥W∥ < 1.
2. The input stream is {ct}t∈Z− is uniformly bounded. In other words, there exists a constant M such

that ∥ct∥ ≤ M for all t ∈ Z−.
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Filters

Definition

Filters are transformations of discrete time signals of infinite length. More formally a filter F for discrete-time
system is represented as:

yt = F(xt).

Both Kalman filter and RNN are examples of filters
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Properties of Filters

Definition

• A filter F is time-invariant if time-invariant if its output does not change when the input is shifted in time:

yt−τ = F(xt−τ ).

• A filterF has fading memory property if the influence of past inputs on the current output diminishes over time.

Contractive dynamical coupling W guarantees the so-called Echo State Property (ESP), which in turn
implies the filter corresponding to a (linear) reservoir system is time-invariant and has fading memory
property (FMP).
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Universality of Echo State Networks

Given the simplicity of ESN, it is natural to ask what is their representational power, compared with the
general class of time-invariant fading memory dynamic filters. ESN is shown to be universal in recent
work in various settings. Most relevant to us is the following:

Theorem (Grigoryeva and Ortega [8](Corollary 11), paraphrased)
Linear reservoir systems with polynomial readouts are universal, in the sense that any time-invariant fading memory
filter can be approximated by to arbitrary precision by a linear reservoir system.

Other settings include:

• Universal approximation capability was first established in the L∞ sense for deterministic, as well
as almost surely uniformly bounded stochastic inputs [8].

• This was later extended in [7] to Lp, 1 ≤ p < ∞ and not necessarily almost surely uniformly
bounded stochastic inputs.

BUT These results are existential arguments. Choice of the fixed reservoir and input mapping
remains an open problem such as in neural architecture search
Random connection is not optimal [14, 17]
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Simple Cycle Reservoirs

Definitions in Simple Cycle Reservoirs
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Permutations

Definition

Let P = [pij] be an n× n matrix.
1. We say P is a permutation matrix if there exists a permutation σ in the symmetric group Sn such that

pij =

{
1, if σ(i) = j,
0, if otherwise.

2. We say a permutation matrix P is a full-cycle permutation if its corresponding permutation σ ∈ Sn is a cycle
permutation of length n.

• Also called left circular shift or cyclic permutation.

A matrix W is a contractive permutation (resp. a contractive full-cycle permutation if W = aP for some
scalar a ∈ (0, 1) ⊂ R and P is a permutation (resp. full-cycle permutation).

W = a ·


0 0 0 . . . 0 1
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

. . .
...

...
0 . . . 1 0


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Simple Cycle Reservoirs

Simple Cycle Reservoirs (SCRs) is a type of highly restricted Reservoir Computer defined by a fixed
cyclic dynamical coupling and fixed aperiodic input coupling of ±1 (or {±1,±i} in the complex case).

Given the wide applicability of SCR, its natural to ask whether SCR is also universal in the same sense.

In this talk we answer the question affirmatively in C and R respectively (same domain applies for input
and output throughout).
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Simple Cycle Reservoirs: formal definition

Definition

A linear reservoir system R = (W,V, h) with dimensions (n,m, d) is called:
• A Simple Cycle Reservoir (SCR) if:

1. W is a contractive full-cycle permutation, and
2. V ∈ Mn×m ({−1, 1}).

• A Complex Simple Cycle Reservoir (C-SCR) if:
1. W is a contractive full-cycle permutation, and
2. V ∈ Mn×m and all entries of V are either ±1 or ±i .
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Simple Cycle Reservoirs: Detail definition

{
xt = Wxt−1 + Vct

yt = h(xt)

where:

• W ∈ RN×N – fixed contractive full-cycle permutation
• V ∈ RN – fixed input coupling, which is either:

• For SCR: V ∈ Mn×m ({−1, 1}), or
• For C-SCR: V ∈ Mn×m ({±1,±i}).

• h : RN → Rd – trainable readout map

• {x(t)}t ⊂ RN – states
• {u(t)}t ⊂ R – inputs
• {y(t)}t ⊂ Rd – outputs
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Multi-Cycle Reservoir

Definition

For k > 1, a linear reservoir system R = (W,V, h) with dimensions (n,m, d) is called a Multi-Cycle Reservoir of order
k if:

1. W is block-diagonal with k (not necessarily identical) blocks of contractive full-cycle permutation couplings W1 ,
..., Wk , of dimensions ni × ni , i = 1, 2, ..., k,

W :=


W1

W2
. . .

Wk

 ,
k∑

i=1

ni = n, and

2. V ∈ Mn×m ({−1, 1}).

The state x ∈ Cn of such a multi-cycle system is composed of the k component states x(i) ∈ Cni ,
i = 1, 2, ..., k, x = (x(1), ..., x(k)). In our case, the readout will act on a linear combination of the
component states,

h(x) = h

(
k∑

i=1

ai · x(i)
)
, ai ∈ C are mixing coefficients.
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SMRC, Twin SCR, and transformation of readout

Definition

A linear reservoir is called a Simple Multi-Cycle Reservoir (SMCR) of order k if it is a Multi-Cycle Reservoir of order k
with k identical (contractive full-cycle permutation) blocks.

Definition

A linear reservoir is called a Twin Simple Cycle Reservoir (Twin SCR) if it is a Multi-Cycle Reservoir of order 2.

It will often be the case that when we transform one reservoir system into another the corresponding
readout mappings will be closely related to each other. In particular:

Definition

Given two functions h, g sharing the same domain D ⊂ Kn , where Kn is a field, we say that g is h with linearly
transformed domain if there exists a linear transformation over Kn with the corresponding matrix A such that
g(x) = h(Ax) for all x ∈ D.
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Equivalent Reservoir Systems

Definition

For two reservoir systems R = (W,V, h) (with dimensions (n,m, d)) and R′ = (W′,V′, h′) (with dimensions
(n′,m, d)):

1. We say the two systems are equivalent if for any input stream, the two systems generate the same output
stream. More precisely, for any input c = {ct}t∈Z− , the solutions {(xt, yt)}t and {(x′t , y′t)}t for systems R and
R′ , given by:

yt = h (xt(c)) = h

∑
j≥0

WjVct−j

 and

y′t = h′
(
x′t(c)

)
= h′

∑
j≥0

(
W′)j V′ct−j

 ,

respectively, satisfy yt = y′t for all t.
2. For ϵ > 0, we say the two systems are ϵ-close if the outputs of the two systems, given any input stream, are

ϵ-close. That is (under the notation above),
∥∥yt − y′t

∥∥
2 < ϵ for all t.

Essentially we view the system as a whole on the input-to-output level.
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Part I: SCR over C

Part I: Simple Cycle Reservoirs (and friends) are universal over C.

Theorem (Li, F., Tino [12])
Any time-invariant fading memory filter over uniformly bounded inputs can be approximated to arbitrary precision by a
Simple Multi-Cycle Reservoir, a C-SCR, or a Twin SCR, each endowed with a polynomial readout.
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Summary of main results

Linear Reservoir System
Universality of linear Reservoir
System with Unitary Dynamical
Coupling

Universality of linear Reservoir
system with Cyclic Permutation
Dynamical Coupling

Universality of Simple Multi-
Cycle Reservoir (SMCR)

Universality of
C-SCR

Universality of
Twin SCR

≺

≺

≺

≺

≺
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Unitary Dilation of Linear Reservoirs

Unitary Dilation of Linear Reservoirs – an intermediate step towards constructing C-SCR
approximators.

Throughout the proofs we will jiggle between the coupling matrix and input map.

We begin by transforming the arbitrary coupling dynamics to a unitary one with dilation theory.
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Dilation Theory: Basic Definitions

Definition

A (bounded linear) operator is a linear transformation T : H → H on a Hilbert space H.

• Example: T(x) = ax for some scalar a in the space.

Definition

An operator U is:
• Unitary if:

U∗U = UU∗ = I.

• Orthogonal if:

U⊤U = UU⊤ = I.
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(Very) Brief Intro. to Dilation Theory

• Dilation Concept:
• Dilation theory studies how an operator on a smaller space can be extended to a larger space, where the

operator takes a more manageable form.
• Given an operator T on a Hilbert space H, dilation theory seeks to find a larger Hilbert space K ⊇ H and a

unitary operator U on K such that T is a "compression" of U.
• This means T = PHU|H , where PH is the orthogonal projection onto H.

• Why Dilation?
• Unitary operators are easier to study because they have well-understood spectral properties.
• Dilation transforms the problem of analyzing T into the simpler problem of analyzing U.
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Dilation Theorems of Sz.-Nagy and Egerváry

Theorem (Sz.-Nagy [16])
Given a contraction W ∈ Mn×n over C (∥W∥ ≤ 1), there exists a unitary operator on an infinite-dimensional Hilbert
space H and an isometric embedding J : Cn → H such that Wk = J∗UkJ for all k ∈ Z.

If we only require Wk = J∗UkJ for all 1 ≤ k ≤ N, Egerváry showed the following:

Theorem (Egerváry [5])
Given a contraction W ∈ Mn×n over C (∥W∥ ≤ 1), there exists a unitary operator on an (N+ 1) · n dimensional Hilbert
space H and an isometric embedding (N+ 1) · n× n matrix J over C such that Wk = J∗UkJ for all k ∈ Z, where:

U =



W 0 0 · · · · · · 0 DW∗
DW 0 0 · · · · · · 0 −W∗

0 I 0 · · · · · · 0 0
... 0

. . .
...

...
...

...
. . .

...
...

...
. . . 0

...
0 · · · · · · · · · 0 I 0


.

© Robert Simon Fong† , Boyu Li‡ , Peter Tino† 30



Summary of main results

Linear Reservoir System
Universality of linear Reservoir
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≺

≺
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Unitary Dilation of Linear Reservoirs

Using the dilation technique we get a ϵ-close approximating reservoir systems with a unitary coupling.

Theorem (Li, F., Tino [12])
Let R = (W,V, h) be a reservoir system defined by contraction W with ∥W∥ =: λ ∈ (0, 1) and satisfying the
assumptions of Definition 2. Given ϵ > 0, there exists a reservoir system R′ = (W′,V′, h′) that is ϵ-close to R with
W′ = λU for a unitary U. Moreover, h′ is h with linearly transformed domain.
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Unitary Dilation of Linear Reservoirs: Proof

Sketch of Proof.





R := (W,V, h)

W ∈ Cn×n

V ∈ Cm×n

h : Cn → Cd

λ := ∥W∥





Unitary universal

RU := (WU , VU , hU )

WU := λ · U ∈ C(N+1)n×(N+1)n

U :=




W DW∗

DW −W ∗

I
. . .

I 0



, VU :=

[
V

0

]

hU (x) = h (Pn(x))

nU := (N + 1)n

≺
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From Unitary to Full-Cycle Permutation State Coupling

From Unitary to Full-Cycle Permutation State Coupling
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From Unitary to Full-Cycle Permutation State Coupling

We first show that matrix similarity of dynamical coupling implies reservoir equivalence.

Theorem (Li, F., Tino [12])
Let W be a contraction and let R = (W,V, h) denote the corresponding reservoir system. Suppose S is an invertible
matrix such that W′ = S−1WS and ∥W′∥ < 1. Then there exists a reservoir system R′ = (W′,V′, h′) that is equivalent
to R.

The proof is technical and will be omitted in the talk.
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From Unitary to Full-Cycle Permutation State Coupling

With the lemma we first show the equivalence on the matrix level.

In particular, we show that any for given unitary state coupling we can always find a full-cycle
permutation that is close to it to arbitrary precision.

This is done by perturbing a given unitary matrix to one that is unitarily equivalent to a cyclic
permutation.

Theorem (Li, F., Tino [12])
Let U be an n× n unitary matrix and δ > 0 be an arbitrarily small positive number. There exists an n1 × n1 matrix A with
n1 > n that is unitarily equivalent to a full-cycle permutation, and an (n1 − n)× (n1 − n) diagonal matrix D such that:∥∥∥∥A−

[
U 0
0 D

]∥∥∥∥ < δ.
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From Unitary to Full-Cycle Permutation State Coupling

Sketch of Proof.

It is well known that the eigenvalues of unitary matrices lie on the unit circle T in C, and the eigenvalues of cyclic
permutations are the roots of unities in C.
Given a unitary matrix U, we can therefore first perturb its eigenvalues to a subset of eigenvalues of a cyclic
permutation matrix. The remaining roots of unity (eigenvalues of the cyclic permutation) not covered by the previous
operation are then filled in using direct sum with the diagonal matrix consisting of the missing eigenvalues.
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From Unitary to Full-Cycle Permutation State Coupling

Combining the two results, we obtain the universality of linear reservoirs with full-cycle permutation
coupling:

Theorem (Li, F., Tino [12])
Let U be an n× n unitary matrix and W = λU with λ ∈ (0, 1). Let R = (W,V, h) be a reservoir system that satisfies the
assumptions of Definition 2 with state coupling W. For any ϵ > 0, there exists a reservoir system Rc = (Wc,Vc, hc)
that is ϵ-close to R such that:

1. Wc is a contractive full-cycle permutation with ∥Wc∥ = ∥W∥ = λ ∈ (0, 1), and
2. hc is h with linearly transformed domain.
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From Unitary to Full-Cycle Permutation State Coupling

Sketch of Proof.





R := (W,V, h)

W ∈ Cn×n

V ∈ Cm×n

h : Cn → Cd

λ := ∥W∥





Unitary universal

RU := (WU , VU , hU )

WU := λ · U ∈ C(N+1)n×(N+1)n

U :=




W DW∗

DW −W ∗

I
. . .

I 0



, VU :=

[
V

0

]

hU (x) = h (Pn(x))

nU := (N + 1)n





Cyclic Permutation universal

R′
U := (W ′

U , V
′
U , h

′
U )

W ′
U = λ ·

[
U 0

0 D

]
∼= λ · P,

P – cyclic permutation, P ∈ Cn′
U×n′

U

V ′
U := S

[
VU

0

]
, h′

U (x) = hU

(
Pn′

U
(S∗x)

)

n′
U > nU , S– unitary transform

≺

≺
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Universality of Simple Multi-Cycle Reservoir, C-SCR, and Twin SCRs

We showed that the dynamical coupling W of the reservoir system can be made into a
full-cycle permutation. It remains to show that the input-coupling V can be made into

Mn×m ({±1}) or Mn×m ({±1,±i}).
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Summary of main results

Linear Reservoir System
Universality of linear Reservoir
System with Unitary Dynamical
Coupling

Universality of linear Reservoir
system with Cyclic Permutation
Dynamical Coupling

Universality of Simple Multi-
Cycle Reservoir (SMCR)

Universality of
C-SCR

Universality of
Twin SCR

≺

≺

≺

≺

≺
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Universality of SMCR

Universality of SMCR
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Universality of Simple Multi-Cycle Reservoir

We begin by enforcing all entries of the input-coupling to be in ±1.

Theorem (Li, F., Tino [12])
For any reservoir system R = (W,V, h) that satisfies the assumptions of Definition 2 and any ϵ > 0, there exists a
Simple Multi-Cycle Reservoir R′ = (W′,V′, h′) that is ϵ-close to R. Moreover, ∥W∥ = ∥W′∥ and h′ is h with linearly
transformed domain.

It is important to note that

• Here W′ is a contractive permutation. That is, it is no longer a full-cycle permutation.
• We managed to get V′ ∈ Mn×m ({±1}), as per definition of SMCR.
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Universality of Simple Multi-Cycle Reservoir: Proof

Sketch of Proof.





Cyclic Permutation universal

R′
U := (W ′

U , V
′
U , h

′
U )

W ′
U = λ ·

[
U 0

0 D

]
∼= λ · P,

P – cyclic permutation, P ∈ Cn′
U×n′

U

V ′
U := S

[
VU

0

]
, h′

U (x) = hU

(
Pn′

U
(S∗x)

)

n′
U > nU , S– unitary transform





SMCR universal

RP := (WP , VP , hP )

WP ∈ C(n′
U)

2·m×(n′
U)

2·m
WP – contractive permutation.

WP :=




λ · P
. . .

λ · P




VP ∈ M
m×(n′

U)
2·m ({−1, 1})

hP (x1, · · · ,xn′
Um) := h′

U

(∑n′
Um

i=1 aixi

)

np = n′
U · (n′

Um)

≺
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Universality of C-SCR

Universality of C-SCR
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Moving back to cyclic permutation coupling

In order to regain the full-cycle permutation dynamical coupling matrix. This requires a more careful
construction.

We first show that an arrangement of full-cycle block of individual full-cycle permutation blocks can be
under some conditions rearranged into a larger full-cycle permutation matrix.

Lemma (Li, F., Tino [12])
Let n, k be two natural numbers such that gcd(n, k) = 1. Let P be an n× n full-cycle permutation. Consider the nk × nk
matrix:

P1 =


0 0 0 . . . 0 P
P 0 0 . . . 0 0
0 P 0 . . . 0 0
...

. . .
...

...
0 . . . P 0

 .

Then P1 is a full-cycle permutation.
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On the gcd condition

We emphasis that the condition gcd(n, k) = 1 is crucial.

Consider a simple example where n = 2 and k = 3. Let P be the matrix for cyclic permutation (1, 2),

P =

[
0 1
1 0

]
.

From our construction, the matrix P1 is

P1 =


1

1
1

1
1

1


One can check that P1 corresponds to the cyclic permutation (1, 4, 5, 2, 3, 6). If we picked k = 2, then

P1 =


1

1
1

1

 ,

which is not a full-cycle permutation.
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Universality of C-SCR and Twin SCRs

The second machinery we require is a way to break any input-coupling to M (±1) and M (±1,±i). The
lemma is technical and we refer to the paper for detailed exposition. It is sort of like finding the closest
rational number to each real (or complex) entry.

Lemma (Li, F., Tino [12])
For any n×m real matrix V and δ > 0, there exists k matrices {F1, · · · , Fk} ⊂ Mn×m ({−1, 1}) and a constant integer
N > 0 such that: ∥∥∥∥∥∥V −

1
N

k∑
j=1

Fj

∥∥∥∥∥∥ < δ

Moreover, k can be chosen such that gcd(k, n) = 1.

Corollary (Li, F., Tino [12])
For any n×m complex matrix V and δ > 0, there exists k matrices {F1, · · · , Fk} where each Fi ∈ Mn×m (±1) or
Mn×m (±i) and a constant integer N > 0 such that:∥∥∥∥∥∥V −

1
N

k∑
j=1

Fj

∥∥∥∥∥∥ < δ

Moreover, k can be chosen such that gcd(k, n) = 1.
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Universality of C-SCR

Finally, we are ready to show our main theorem:

Theorem (Li, F., Tino [12])
For any reservoir system R = (W,V, h) of dimensions (n,m, d) that satisfies the assumptions of Definition 2 and any
ϵ > 0, there exists a C-SCR R′ = (W′,V′, h′) of dimension (n′,m, d) that is ϵ-close to R. Moreover, ∥W∥ = ∥W′∥ and h′
is h with linearly transformed domain.

By construction, W′ is a contractive full-cycle permutation and entries of V′ are either all ±1 or ±i. This
comes at a price of dimension increase.
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Universality of C-SCR : Proof

Sketch of Proof.





Cyclic Permutation universal

R′
U := (W ′

U , V
′
U , h

′
U )

W ′
U = λ ·

[
U 0

0 D

]
∼= λ · P,

P – cyclic permutation, P ∈ Cn′
U×n′

U

V ′
U := S

[
VU

0

]
, h′

U (x) = hU

(
Pn′

U
(S∗x)

)

n′
U > nU , S– unitary transform





C-SCR universal

RC := (WC, VC, hC)

WC := λ · P1 ∈ Cn′
U ·k×n′

U ·k

P1 :=




0 0 0 . . . 0 P

P 0 0 . . . 0 0

0 P 0 . . . 0 0
...

. . .
...

...

0 . . . P 0



· · · (†)

VC ∈ Mm×n′
U ·k ({−1, 1}) OR VC ∈ Mm×n′

U ·k ({−i, i})
hC(x1, . . . ,xk) = h′

U

(
1

NC
∑k

j=1 xj

)

nC = n′
U · k; k satisfies gcd(k, n′

U ) = 1

≺
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Universality of Twin SCR

Universality of Twin SCR
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Universality of Twin SCR

We now wish to push the input-coupling V back to M (±1) while maintaining the cyclic-permutation
dynamical coupling W. To do this we require the “direct sum" of exactly two SCRs:

Theorem (Li, F., Tino [12])
For any reservoir system R = (W,V, h) of dimensions (n,m, d) and any ϵ > 0, there exists a Twin Simple Cycle
Reservoir R′ = (W′,V′, h′) of dimension (n′,m, d) that is ϵ-close to R. Moreover, ∥W∥ = ∥W′∥ and h′ is h with linearly
transformed domain.

Note that:

• W′ is a direct sum of two full-cycle permutation matrices.
• V′ ∈ Mn×m ({±1}).
• This is NOT a stronger version of SMRC. The dynamical coupling of the Twin SCR described here

require is two big blocks of SCR. Whereas in the previous theorem SMRC has small blocks of
full-cycle permutation.
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Universality of Twin SCR : Proof

Sketch of Proof.





Cyclic Permutation universal

R′
U := (W ′

U , V
′
U , h

′
U )

W ′
U = λ ·

[
U 0

0 D

]
∼= λ · P,

P – cyclic permutation, P ∈ Cn′
U×n′

U

V ′
U := S

[
VU

0

]
, h′

U (x) = hU

(
Pn′

U
(S∗x)

)

n′
U > nU , S– unitary transform





C-SCR universal

RC := (WC, VC, hC)

WC := λ · P1 ∈ Cn′
U ·k×n′

U ·k

P1 :=




0 0 0 . . . 0 P

P 0 0 . . . 0 0

0 P 0 . . . 0 0
...

. . .
...

...

0 . . . P 0



· · · (†)

VC ∈ Mm×n′
U ·k ({−1, 1}) OR VC ∈ Mm×n′

U ·k ({−i, i})
hC(x1, . . . ,xk) = h′

U

(
1

NC
∑k

j=1 xj

)

nC = n′
U · k; k satisfies gcd(k, n′

U ) = 1





Twin SCR universal

RR := (WR, VR, hR)

WR := λ(Pr ⊕ Pi) = λ ·
[
Pr 0

0 Pi

]
,

where both Pr, Pi, has form (†) .
WR ∈ Cn′

U ·(kr+ki)×n′
U ·(kr+ki)

VR ∈ Mm×n′
U ·(kr+ki) ({−1, 1})

hR(x1, . . . ,xkr
,x′

1, . . . ,x
′
ki
)

= h′
U

(
1

NR
r

∑kr

j=1 xj +
i

NR
i

∑ki

j=1 x
′
j

)

nR = n′
U · (kr + ki)

kr, ki satisfies gcd(kr, n
′
U ) = gcd(kr, n

′
U ) = 1

≺

≺
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Summary of main results

Linear Reservoir System
Universality of linear Reservoir
System with Unitary Dynamical
Coupling

Universality of linear Reservoir
system with Cyclic Permutation
Dynamical Coupling

Universality of Simple Multi-
Cycle Reservoir (SMCR)

Universality of
C-SCR

Universality of
Twin SCR

≺

≺

≺

≺

≺
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Summary of main results: Detailed





R := (W,V, h)

W ∈ Cn×n

V ∈ Cm×n

h : Cn → Cd

λ := ∥W∥





Unitary universal

RU := (WU , VU , hU )

WU := λ · U ∈ C(N+1)n×(N+1)n

U :=




W DW∗

DW −W ∗

I
. . .

I 0



, VU :=

[
V

0

]

hU (x) = h (Pn(x))

nU := (N + 1)n





Cyclic Permutation universal

R′
U := (W ′

U , V
′
U , h

′
U )

W ′
U = λ ·

[
U 0

0 D

]
∼= λ · P,

P – cyclic permutation, P ∈ Cn′
U×n′

U

V ′
U := S

[
VU

0

]
, h′

U (x) = hU

(
Pn′

U
(S∗x)

)

n′
U > nU , S– unitary transform





SMCR universal

RP := (WP , VP , hP )

WP ∈ C(n′
U)

2·m×(n′
U)

2·m
WP – contractive permutation.

WP :=




λ · P
. . .

λ · P




VP ∈ M
m×(n′

U)
2·m ({−1, 1})

hP (x1, · · · ,xn′
Um) := h′

U

(∑n′
Um

i=1 aixi

)

np = n′
U · (n′

Um)





C-SCR universal

RC := (WC, VC, hC)

WC := λ · P1 ∈ Cn′
U ·k×n′

U ·k

P1 :=




0 0 0 . . . 0 P

P 0 0 . . . 0 0

0 P 0 . . . 0 0
...

. . .
...

...

0 . . . P 0



· · · (†)

VC ∈ Mm×n′
U ·k ({−1, 1}) OR VC ∈ Mm×n′

U ·k ({−i, i})
hC(x1, . . . ,xk) = h′

U

(
1

NC
∑k

j=1 xj

)

nC = n′
U · k; k satisfies gcd(k, n′

U ) = 1





Twin SCR universal

RR := (WR, VR, hR)

WR := λ(Pr ⊕ Pi) = λ ·
[
Pr 0

0 Pi

]
,

where both Pr, Pi, has form (†) .
WR ∈ Cn′

U ·(kr+ki)×n′
U ·(kr+ki)

VR ∈ Mm×n′
U ·(kr+ki) ({−1, 1})

hR(x1, . . . ,xkr
,x′

1, . . . ,x
′
ki
)

= h′
U

(
1

NR
r

∑kr

j=1 xj +
i

NR
i

∑ki

j=1 x
′
j

)

nR = n′
U · (kr + ki)

kr, ki satisfies gcd(kr, n
′
U ) = gcd(kr, n

′
U ) = 1

≺

≺

≺

≺

≺
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Universality over C

We now showed that: Given a linear reservoir system R with a polynomial readout h, we can
construct a C-SCR (also SMCR or Twin SCR) R′ that is ϵ-close to R in the space of linear
reservoir systems.
Combining this with the follow result:

Theorem (Grigoryeva and Ortega [8](Corollary 11), paraphrased)
Linear reservoir systems with polynomial readouts are universal, in the sense that any time-invariant fading memory
filter can be approximated by to arbitrary precision by a linear reservoir system.

We obtain our main theorem of Part I:

Theorem (Li, F., Tino [12])
Any time-invariant fading memory filter over uniformly bounded inputs can be approximated to arbitrary precision by a
Simple Multi-Cycle Reservoir, a C-SCR, or a Twin SCR, each endowed with a polynomial readout.

It is worth noting that our results are not restricted to polynomial readouts, as long as they are
continuous.

© Robert Simon Fong† , Boyu Li‡ , Peter Tino† 56



Part II: SCR over R

Part II: Simple Cycle Reservoirs are universal over R.

Theorem (F., Li, Tino [6])
Any time-invariant fading memory filter can be approximated to arbitrary precision by Simple Cycle Reservoirs (Full
stop!)
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From C to R

Reducing from C to R is far from straightforward! In particular we have the following open questions:

• In C attempts to even partially restrict SCR in from C to R would result in more complex
multi-reservoir structures.

• We want all components to be in R while maintaining:
1. Dynamical coupling W – full-cycle permutation
2. Input coupling V – all entries in ±1.

• Moreover, how to we restrict the dimension expansion from the two-step dilation?

In Part II we will address all these questions by:

• We prove that SCRs operating in real domain are universal approximators of time-invariant
dynamic filters with fading memory.

• We formulate a novel method to drastically reduce the number of SCR units, making such highly
constrained architectures natural candidates for low-complexity hardware implementations.

© Robert Simon Fong† , Boyu Li‡ , Peter Tino† 58



Dilation Theorem of Egerváry

On the real domain, Egerváry’s dilation theorem can be extended to:

Theorem (Egerváry [5])
Given a contraction W ∈ Mn×n over R (∥W∥ ≤ 1), there exists an orthogonal operator on an (N+ 1) · n dimensional
Hilbert spaceH and an isometric embedding (N+ 1) · n× n matrix J over C such that Wk = JTUkJ for all k ∈ Z, where:

U =



W 0 0 · · · · · · 0 DW⊤
DW 0 0 · · · · · · 0 −W⊤

0 I 0 · · · · · · 0 0
... 0

. . .
...

...
...

...
. . .

...
...

...
. . . 0

...
0 · · · · · · · · · 0 I 0


.
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Orthogonal Dilation of Linear Reservoirs

Egerváry’s dilation theorem allows us to get a ϵ-close approximating reservoir system with an
orthogonal dynamic coupling matrix given an arbitrary linear reservoir.

Theorem (F., Li, Tino [6])
Let R = (W,V, h) be a reservoir system defined by contraction W with ∥W∥ =: λ ∈ (0, 1). Given ϵ > 0, there exists a
reservoir system R′ = (W′,V′, h′) that is ϵ-close to R, with dynamic coupling W′ = λU, where U is orthogonal.
Moreover, h′ is h with linearly transformed domain.
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The Caveat

It remains to be shown that for any given orthogonal state coupling we can always find a full-cycle
permutation that is close to it to arbitrary precision.

Specifically, when given an orthogonal matrix, the goal is to perturb it to another orthogonal matrix that
is orthogonally equivalent to a permutation matrix.

Here we cannot adopt the strategy in the C case because it would inevitably involve a unitary matrix
over C during the diagonalization process. To keep things in R, we convert an orthogonal matrix to its
canonical form via a (real) orthogonal matrix.
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Canonical form of Orthogonal Matrix

For θ ∈ [0, 2π), consider the following rotation matrix:

Rθ =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

The eigenvalues of Rθ are precisely e±iθ Note that in the R case, eigenvalues comes in pairs.. For any
orthogonal matrix C ∈ O(n), there exists an orthogonal matrix S such that the product S⊤CS has the
following form:

S⊤CS =



Rθ1

. . .
Rθk

±1
. . .

±1


=


Rθ1

. . .
Rθk

Υ

 ,

where θi ∈ (0, π), and Υ := diag{a1, a2, ..., aq}, ai ∈ {−1,+1}, i = 1, 2, ..., q, is a diagonal matrix with q
entries of ±1’s. For simplicity, we will assume for the rest of the talk an even dimension n.
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Canonical form of Orthogonal Matrix

Observing:

R0 =

[
1 0
0 1

]
, Rπ =

[
−1 0
0 −1

]
.

Υ can therefore be written as a block diagonal matrix with blocks R0 and Rπ .

Hence S⊤CS is a block diagonal matrix consisting of {Rθ1 , . . . ,Rθm}, θi ∈ [0, π], i = 1, 2, ...,m, and at

most one block of the form
[
1 0
0 −1

]
. In the literature this is known as the canonical form of the

orthogonal matrix C.
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From Orthogonal to Full-Cycle Permutation Coupling

Permutation matrices are orthogonal, therefore we can compute their corresponding canonical form. In
particular, given an ℓ× ℓ full-cycle permutation P (ℓ even), we can find an orthogonal matrix Q such that
Q⊤PQ is a block diagonal matrix of {1,−1,R 2πj

ℓ
: 1 ≤ j < ℓ

2}.

Here, note that eigenvalues comes in pairs: for each 1 ≤ j < ℓ
2 , R 2πj

ℓ
has two conjugate eigenvalues ei 2πj

ℓ

and e−i 2πj
ℓ . Hence, an ℓ× ℓ orthogonal matrix X is orthogonally equivalent to a full-cycle permutation if

and only if its canonical form consists of:

1. A complete set of rotation matrices {R 2πj
ℓ

: 1 ≤ j < ℓ
2}, and

2. Two additional diagonal entries of 1 and −1.

We construct such an orthogonal matrix X and show:

Theorem (F., Li, Tino [6])
Let U be an n× n orthogonal matrix and δ > 0 be an arbitrarily small positive number. There exists n1 ≥ n, an n1 × n1
orthogonal matrix S, an n1 × n1 full-cycle permutation P and an (n1 − n)× (n1 − n) orthogonal matrix D, such that∥∥∥∥S⊤PS−

[
U 0
0 D

]∥∥∥∥ < δ.
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From Orthogonal to Full-Cycle Permutation Coupling

Sketch of Proof.

Given an orthogonal matrix U, we find its canonical form. The corresponding angles once again lies on the unit circle
T in C. We then perturb the pairs of angles to the closest subset of roots of unity. The remaining roots of unity not
covered by the previous operator are filled in as a direct sum of blocks of Rθ . The resulting matrix constitutes the
canonical form of the approximating system.

Given a reservoir system with dynamic coupling W and its equivalent with orthogonal coupling U, rotational angles in
the canonical form of U are shown as red dots. Roots of unity corresponding to cyclic dilation approximate the
rotational angles to a prescribed precision ϵ.
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Maximum Bipartite Matching

• Problem Definition: Given a bipartite graph G = (A ∪ B, E), where A and B are disjoint sets of
vertices, find a matching M ⊆ A× B such that the number of edges in M is maximized, and no two
edges in M share a vertex.

• Hopcroft-Karp Algorithm [10]:

Time Complexity: O(
√

|U ∪ V| · |E|)

Space Complexity: O(|U ∪ V|+ |E|)
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Dilation Dimension Reduction via Maximum Bipartite Matching

In practice, the dimension n1 = dim
(
S⊤PS

)
is usually much smaller than the theoretical upper bound of

2ℓ0(k + 1). Here, the integer ℓ0 is chosen to satisfy |1− e
πi
ℓ0 | < δ, which equivalently means:

π

ℓ0
< arccos

(
1− δ2

2

)
.

With Maximum Bipartite Matching, a lower dimension can be achieved:

• Let {θi} denote angles in the canonical form of n× n orthogonal matrix U.
• Construct bipartite graph G = (A ∪ B, E) with

• Vertex set A ∪ B where: A = {θi} and B = { 2aπ
n′ : 0 < a < n′

2 }.

• e ∈ E joins θi ∈ A with 2aπ
n′ ∈ B if and only if

∣∣∣eθi i − e
2aπi
n′

∣∣∣ < δ.

• By construction we can find distinct ki roots of unity 2kiπ
n′ to approximate θi if and only if there exists

a matching for this bipartite graph with exactly |A| edges.

We will see that the dimension obtained is significantly lower than that of the theoretical upperbound.
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From Orthogonal to Full-Cycle Coupling

With the previous results, we can now show

Theorem (F., Li, Tino [6])
Let U be an n× n orthogonal matrix and W = λU with λ ∈ (0, 1). Let R = (W,V, h) be a reservoir system with state
coupling W. For any ϵ > 0, there exists a reservoir system Rc = (Wc,Vc, hc) that is ϵ-close to R such that:

1. Wc is a contractive full-cycle permutation with ∥Wc∥ = ∥W∥ = λ ∈ (0, 1), and
2. hc is h with linearly transformed domain.

The proof follows that of an analogous statement in C. The arguments follow through by replacing
unitary matrices by orthogonal matrices and conjugate transpose by regular transpose.
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From Full-Cycle Permutation Coupling to SCR

To show the universality of SCR in R, we recall two useful lemmas from Cwhich carries naturally onto R.

Lemma (Li, F., Tino [12])
Let n, k be two natural numbers such that gcd(n, k) = 1. Let P be an n× n full-cycle permutation. Consider the nk × nk
matrix:

P1 =


0 0 0 . . . 0 P
P 0 0 . . . 0 0
0 P 0 . . . 0 0
...

. . .
...

...
0 . . . P 0

 .

Then P1 is a full-cycle permutation.

Lemma (Li, F., Tino [12])
For any n×m real matrix V and δ > 0, there exists k matrices {F1, · · · , Fk} ⊂ Mn×m ({−1, 1}) and a constant integer
N > 0 such that: ∥∥∥∥∥∥V −

1
N

k∑
j=1

Fj

∥∥∥∥∥∥ < δ

Moreover, k can be chosen such that gcd(k, n) = 1.
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From Full-Cycle Permutation Coupling to SCR

Finally, we now obtain our main theorem showing the universality of SCR over R.

Theorem (F., Li, Tino [6])
For any reservoir system R = (W,V, h) of dimensions (n,m, d) and any ϵ > 0, there exists a SCR R′ = (W′,V′, h′) of
dimension (n′,m, d) that is ϵ-close to R. Moreover, ∥W∥ = ∥W′∥ and h′ is h with linearly transformed domain.

The proof follows the same flow with one major difference: Since because the dynamic coupling matrix
V in the intermediate steps are all over R instead of C, the resulting matrix V′ only have ±1.

Once again, combining this with the follow result:

Theorem (Grigoryeva and Ortega [8](Corollary 11), paraphrased)
Linear reservoir systems with polynomial readouts are universal, in the sense that any time-invariant fading memory
filter can be approximated by to arbitrary precision by a linear reservoir system.

We obtain our main theorem of Part II:

Theorem (F., Li, Tino [6])
Any time-invariant fading memory filter can be approximated to arbitrary precision by Simple Cycle Reservoirs.
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A bit of numerical analysis

Part III: Numerical Analysis
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Set up of Numerical Analysis

For each trail of the experiment we initialize a linear reservoir system with dim(W) = 5, where:

• The entries W are independently sampled from the uniform distribution U(0, 1).
• The elements of input-to-state coupling V is generated by scaling the binary expansion of the digits

of π by 0.05

The numerical analysis goes as follows:

• Each initial system R = (W,V, h) is dilated over a set of pre-defined dilation dimensions
D := {2, 6, 10, 15, 19, 24, 28, 33, 37, 42}.

• For each N ∈ D, we construct a linear reservoir system RU with an orthogonal dynamic coupling
WU of dimension nU = (N+ 1)n.

• Finally we dilate RU into an ϵ-close linear reservoir system RC with contractive cyclic-permutation
dynamic coupling.
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Numerical Results

Mean and 95% confidence intervals of the MSE of the states of the original reservoir and the
approximating cyclic dilation systems over 15 randomized generations of the original system.
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0 5 10 15 20 25 30 35 40
Dilation N

10 6

10 5

10 4

10 3

10 2

M
ea

n 
di

ffe
re

nc
e 

in
 E

uc
lid

ea
n 

no
rm

 (l
og

)

Figure: Ettm2

© Robert Simon Fong† , Boyu Li‡ , Peter Tino† 73



Reduction of Dilation Dimension with Maximum Bipartite Matching

Finally, we illustrate how the dimension nC of the cyclic dilation obtained from the maximum matching
program in bipartite graphs can yield reservoir sizes drastically lower than the theoretical upper bound:

n1 = 2 · ℓ0 · (k + 1) >

2 · π

arccos
(
1− δ2

2

) · (k + 1)

 .

Theoretical upper bound v.s. dimension obtained from maximum matching from cyclic dilations of 10
uniformly generated orthogonal matrices U for each initial dimension n ∈ {20, 40, . . . , 140, 160}
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Concluding Remarks

• In C, we showed constructively the universal approximation properties of Complex - Simple Cycle
Reservoirs (and friends) in the space of time-invariant fading-memory filters.

• In R, we proved constructively that SCRs are universal approximations for any real-valued
time-invariant fading memory filter over uniformly bounded input streams.

• We facilitated the completion of roots of unity by utilizing a maximum matching program in
bipartite graphs, enabling a tighter dimension expansion of the approximation system.

• The fully constructive nature of our results is a crucial step towards understanding the intrinsic
properties of state-space models and the physical implementations of reservoir computing in
analogue computers such as photonic integrated circuits.
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